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Dynamic scaling and freezing criteria in quasi-two-dimensional dispersions
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We report on a Brownian dynamics simulation study of quasi-two-dimensional dispersions of colloidal
spheres interacting by long-range electrostatic and dipolar magnetic forces. The calculated dynamic correlation
functions are shown to obey dynamic scaling in terms of a characteristic relaxation time related to the mean
particle distance and, due to hydrodynamic interactions, to the particle size. The dynamical freezing criterion
of Löwen @Phys. Rev. E53, R29 ~1996!# is shown to be equivalent to a two-dimensional static freezing
criterion.
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There has been strong interest in recent years in the s
and dynamic properties of quasi-two-dimensional~Q2D! dis-
persions of spherical colloidal particles. Well-studied e
amples of such dispersions are charged particles confi
between two narrow glass plates@1,2#, and superparamag
netic particles close to a water-air interface and interac
via repulsive dipolar magnetic forces@3#. Part of the interest
in these systems arises from the fact that, contrary to l
molecular liquids, the range and strength of the particle
teractions can be experimentally controlled. Moreover,
particle trajectories can be directly tracked using video
croscopy imaging@1#. One area of intensive research is co
cerned with the nature of two-dimensional freezing and m
ing that, contrary to three-dimensional systems, can b
two-stage process of continuous phase transitions with
intermediate hexatic phase@3#.

This report is concerned with the general dynamic beh
ior of Q2D dispersions of spherical particles with strong a
long-range repulsive interactions. The dynamics of colloi
dispersions is controlled not only by direct interpartic
forces, but also by solvent-mediated hydrodynamic inter
tions ~HI!, which can lead to remarkable dynamical effec
@4,5#. We employ a Brownian dynamics~BD! simulation
method to analyze the static and dynamic scaling behavio
these Q2D systems, and to study its implication on rela
static and dynamic freezing criteria. For the first time, p
ticular focus is given to reveal the influence of HI on d
namic scaling and on a related dynamic freezing criterio

Two types of effective pair potentials are considered: fi
a two-dimensional Yukawa potential@6#

bu~r !5LBZ2
e2kr

r
, r .s ~1!

with a hard core part forr ,s, wherer is the distance be
tween two charged spheres of diameters52a, Z is an ef-
fective particle charge in units of the elementary chargeb
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51/kBT, andLB is the so-called Bjerrum length of the so
vent. Equation~1! has been used in various simulation stu
ies as a model potential for the lateral interaction of charg
colloidal spheres between two close planar glass plates,
the screening lengthk21 determined by the counterions dis
sociated from the plates@5,7#. The second potential is o
dipolar form

bu~r !5
m0

4pkBT

M2

r 3
, ~2!

and describes to very good accuracy the magnetic repul
of superparamagnetic colloidal spheres of induced magn
momentM5xeffB located at a liquid-air interface, with a
magnetic field of strengthB applied perpendicular to the in
terface. Here,xeff is the effective magnetic particle suscep
bility. Such well-defined Q2D systems have been studied
@8,9#.

The BD finite difference equation employed here for t
trajectories ofN Brownian spheres in a fluid of viscosityh
reads@5,9#

DRi5(
j 51

N

@bDi j ~RN!•Fj
P1“ j•Di j ~RN!#Dt1DX i

1O~Dt2!, ~3!

where DRi is a two-dimensional vector describing the i
plane displacement of particlei during timet to t1Dt, Fj

P is
the direct force on particlej at t derived from the pair poten
tials of Eqs.~1! and ~2!, respectively, andDi j (R

N) is the
hydrodynamic diffusivity tensor. The latter depends in pr
ciple on the configurationRN5$R1 , . . . ,RN% of all N
spheres at timet and accounts for the solvent-mediated
between particlesi andj. The two-dimensional vectorDX i is
a Gaussian-distributed random displacement with zero m

z-
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and covariance matrix̂DX iDX j&52Di j Dt, where the brack-
ets indicate an equilibrium ensemble average. We emplo
time stepDt within the range of 1025–1024 t0, wheret0
51/(nD0) is the time needed for a particle to diffuse th
geometrical interparticle distancer 05n21/2. Here, n is the
two-dimensional number density, andD0 is the free diffusion
coefficient of a particle. For the strongly repelling and rath
dilute systems under consideration, HI are dominated
their pairwise additive long-range part. We therefore treatDi j
to good accuracy within the Rotne-Prager level, which p
serves the positive definiteness of the exact diffusivity ten
matrix. The long-range nature of HI is accounted for by e
ploying an Ewald-like summation technique. The influen
of HI on dynamic properties is analyzed by comparison w
BD calculations with HI disregarded.

Three systems I–III are analyzed, with parameters lis
in Table I. System I is an aqueous magnetic system descr
by the pair potential~2!, whereas systems II and III are aqu
ous charge-stabilized dispersions characterized by the
potential~1!. These systems are examples of strongly rep
sive particle dispersions with pronounced next neigh
shells and masked excluded volume interactions, chara
ized in their static behavior by a single length scale given
r 0. The radial distribution functiong(r ) of these systems
reveals a pronounced principal peak located at a radial
tancer m ~cf. BD results in Fig. 1 and Table I!, nearly equal to
r 0. The system parameters are such that the threeg(r )’s have
the same principal peak heightg(r m). When plotted vs re-
duced distancex5r /r 0, theg(r )’s are seen from the inset o
Fig. 1 to superimpose nearly perfectly within thex range
depicted. This static scaling behavior implies that the co
sponding two-dimensional static structure factorsS(q)51
12pn*0

` dr r @g(r )21#J0(qr) of systems I–III, whereq is
the scattering wave number andJ0 the zeroth-order Besse
function of the first kind, nearly coincide when plotted vs t
reduced wave numbery5q/q0. Here,q052p/r 0'qm with
the peak ofS(q) located atqm .

Provided thatr m'r 0 is the only relevant length scale als
for the particle dynamics, as expected without HI, there i
single characteristic time scalet05r 0

2/D0 associated withr 0.
Dynamic properties like the dimensionless distinct van Ho
correlation function gd(r ,t)5n21^( iÞ j 51

N d„r2Ri(t)

TABLE I. Parameters of the Q2D superparamagnetic aque
system I and charged systems II and III without HI, and with p
potentials in Eqs.~1! and ~2!, respectively. The Bjerrum length
LB57.2 Å, corresponds to water as solvent at room temperat
The coupling parameters areG I5bm0M2n3/2/(4p) and G II,III

5LBZ2n1/2.

System I System II System III

C5pna2 0.02 0.01 0.003
r 0 /a 12.5 17.7 32.4
G 3.9 47.8 91.4
k5kr 0 2.5 3.9
r m /r 0 0.98 0.98 0.97
2br 0 du/drur 5k21 112 420
05240
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1Rj (0)…&/N and the lateral mean-squared displacem
W(t)5^@Ri(t)2Ri(0)#2&/4 depend onr and t only through
x and the reduced timet5t/t0. The functiongd(r ,t) is pro-
portional to the conditional probability density of finding,
time t, a particle a distancer apart from the location of an
other one att50. Sincegd(r ,0)5g(r ), gd(r ,t) is the time-
dependent generalization ofg(r ). Quantities likegd(r ,t) and
W(t) can be measured using colloidal video imaging. B
results without HI for thegd(r ,t)’s of I–III at time t
50.032t0 are shown in Fig. 1. Corresponding results for t

FIG. 2. Normalized self-diffusion functionD(t)5W(t)/(tD0)
of systems I and III with/without HI vs reduced timet. With HI, the
system parameters are as in Table I, aside fromr 0 /a and surface
fractionC that are given in the figure. For fixed potential paramet
and fixedr 0, we considerr 0 /a512.5 and 6.25, withS(qm)52.3.
Without HI, the long-time asymptotic value is given byD(`)
'0.26. With HI,D(`)'0.31 for r 0 /a512.5, andD(`)'0.34 for
r 0 /a56.25.

s
r

e.

FIG. 1. BD results without HI for the distinct van Hove functio
gd(r ,t) of systems I–III ~cf. Table I! at t50 ~thin lines!, where
gd(r ,0)5g(r ), and att/t050.032 ~thick lines!. The characteristic
times t0 of I–III are different from each other. Inset:gd(x,t) vs
dimensionless distancex5r /r 0 and reduced timet5t/t0, with r 0

5n21/2 andt05(nD0)21.
1-2
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normalized reduced self-diffusion function D(t)
5W(t)/(D0t), with D(0)51, vs reduced timet are shown
with/without HI in Fig. 2. The inset in Fig. 1 clearly demon
strates dynamic scaling, according to which colloidal s
tems with long-range repulsion and identical peak heig
g(r m) @likewise, identicalS(qm)# have nearly identical dy-
namic properties, e.g., identicalgd(r ,t) and W(t)/r m

2 , as
functions of reduced distance and time. The correlation t
t/t050.032 corresponds tot'5ta for I, t'10ta for II, and
t'34ta for III, where ta5a2/D0. As seen from Fig. 2, this
time lies in the intermediate time regime where the redu
mean-squared displacementD(t) has approached th
asymptotic long-time valueD(`) ~cf. caption of Fig. 2!.

Although the dynamic scaling appears reasonable for
tems characterized by a single relevant static length sca
is by no means a trivial result. Dynamic scaling of the d
namic structure factorS(q,t) related togd(r ,t) by Fourier
transformation, as function of reduced wave numbery and
time t, has been predicted very recently for thre
dimensional deionized charge-stabilized suspensions usi
mode coupling approximation~MCA! with HI neglected
@10#. While the dynamic scaling predictions of the MCA a
ply also to q-space dynamic properties in two dimension
the present Q2D simulation study provides an unambigu
validation of dynamic scaling, particularly regarding the i
volved approximations made in the MCA. Note that the
polar potential provides no characteristic length whereas
Yukawa potential includesk21 as an intrinsic length. The
screening lengthsk21 of the charged systems II and III ar
significantly smaller thanr m ~cf. Table I! and, since
r 0b du/drur 5k21@1 with pronounced next neighbor shel
at distancer 0, are therefore of no relevance regarding sc
ing.

The potentials~1! and ~2! are special cases of the form
bu(r )5Ar2 l f (kr ) with regular functionf, amplitudeA, and
exponent l. By expressing Eq.~3! without HI, and the
Ornstein-Zernicke equation associated withg(r ) @11#, in
terms of reduced position vectorsRi /r 0 and reduced timet,
one can see that systems of equal dimensionless cou
parameterG5Anl /2 and reduced screening parameterk
5kn21/2 are statically and dynamically equivalent. Accor
ing to Table I, the employed values forG and for k are all
different from each other. This shows that the dynamic sc
ing is not just a straightforward consequence of the forms
potentials~1! and ~2!. Sincec(x)'2bu(x)52G f (kx)/xl

for very large separationsr @r 0, with c(x) denoting the di-
rect static correlation function@11#, there are differences in
the small wave number behavior ofS(y) for systems I–III,
and thus in their thermodynamic properties. However, th
differences are visible only whennĉ(y)5121/S(y) is plot-
ted instead ofS(y), whereĉ(y) is the Fourier transform o
c(y) @10,11#.

The dynamic scaling for Q2D dispersions with strong a
long-range particle repulsions implies that systems w
equal g(r m) @and S(qm)# also have the same value of th
normalized long-time self-diffusion coefficient DS

L

5 limt→`W(t)/t. The one-to-one correspondence betwe
S(qm) andDS

L/D0 is shown in Fig. 3, withDS
L extrapolated
05240
-
ts

e

d

s-
, it
-

-
a

,
s

-
e

l-

ng

l-
f

e

d
h

n

from large-t BD calculations ofW(t) as described in Ref
@12#. Without HI, our long-time results forDS

L/D0 vs S(qm)
of the magnetic and Yukawa systems are located on a si
master curve~cf. Fig. 3!, in particular with a value of
DS

L/D0'0.085 for S(qm)'5.5. According to an empirica
dynamical criterion for two-dimensional freezing found b
Löwen @12# from BD simulations without HI for various
inverse-power pair potentials,DS

L/D0'0.085 at the freezing
line independent ofu(r ) and the nature of the freezing pro
cess. Moreover, the peak heightS(qm) of the liquid static
structure factor at two-dimensional freezing was found to
about 5.5@13# at the freezing line, in good accord with th
BD results of Fig. 3. For comparison, the three-dimensio
Hansen-Verlet rule@14# of freezing gives a smaller value fo
S(qm) of about 2.85. This indicates the more strongly pr
nounced static correlations in two-dimensional fluids close
freezing. In contrast, the value ofDS

L/D0'0.098 for three-
dimensional freezing@10,12# is rather close to the one in tw
dimensions. A freezing value ofDS

L/D0'0.1 was obtained
for three-dimensional hard-sphere dispersions also by Fu
@15# using mode-coupling theory asymptotic laws witho
HI. The work of Fuchs corrects earlier work of Indrani an
Ramaswamy@16# who attempted to relate the Hansen-Ver
freezing rule to the one of Lo¨wen et al. using simplified
mode-coupling ideas. With the scheme of Indrani and R
maswamy, the observed freezing valueDS

L/D0'0.1 has been
underestimated by a factor of 2. Summarizing, we ha
shown that the equivalence of two seemingly unrelated st
@13# and dynamic@12# criteria for two-dimensional freezing
is a consequence of dynamic scaling.

So far we have disregarded the dynamical influence of
which introduces the particle radiusa as another relevan
length scale. For the pairwise-additive far-field part of t
hydrodynamic diffusivity tensor prevailing for the system
under consideration, this fact becomes apparent fr

FIG. 3. Reduced long-time self-diffusion coefficientDS
L/D0

without HI and with HI ~for fixed ratio r 0 /a56.25) vs structure
factor peak heightS(qm). System parameters as for I and III, asid
from G andk, which are varied~throughk, Z, n, andB). Solid line:
parametrization of the relationDS

L/D05 f „S(qm)…, using the form
f (z)50.42/(z20.58) with f (1)51 and f (5.5)50.085 that holds
approximately forz>1.5.
1-3
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BRIEF REPORTS PHYSICAL REVIEW E 64 052401
Di j (R
N)/D0'Di j

(2)(@Ri2Rj #/a)/D0, whereDi j
(2) is the pair-

wise additive two-body part ofDi j @17#. With HI, there exists
thus a more restricted form of dynamic scaling where
master curves forgd(x,t) and D(t) depend ona/r 0. This
restricted scaling can be deduced also from MCA results
Brownian systems with far-field HI included@18#.

BD results forD(t) and DS
L/D0 vs. S(qm) with HI are

depicted in Figs. 2 and 3 for magnetic and Yukawa syste
In Fig. 2, two size ratiosr 0 /a56.25 and 12.5 are used t
show the dependence ofD(t) on r 0 /a. The observed modes
enhancement of self-diffusion is indicative of prevailing fa
field HI @5,8,9,18#. The BD results ofD(t) for I and III with
HI and givena/r 0 are seen, aside from statistical uncerta
ties, to be nearly identical with each other. According to F
2, the enhancement ofD(t) is smaller for smallera/r 0. The
value ofDS

L/D0 close to freezing is thus only modestly e
larged by HI as anticipated from Fig. 3 for the caser 0 /a
56.25. BD simulations with HI become exceedingly tim
consuming when the freezing point is approached, sinc
large number of particles is needed to account for strong
long-range particle correlations. Note that the short-ti
self-diffusion coefficientDS

S5 limt→0W(t)/t is equal toD0
nd

tt.

ys
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for systems with prevailing far-field HI. For systems wi
dominating near-field HI and strong lubrication forces, li
dispersions of colloidal hard spheres,DS

S,D0 and the dy-
namic freezing criterion must then be stated in terms
DS

L/DS
S instead ofDS

L/D0, as shown for three-dimensiona
bulk systems by experiment@19# and by rescaled MCA cal-
culations@10#.

To conclude, we have analyzed the static and dyna
scaling behavior of strongly repulsive Q2D dispersions w
and without HI. Dynamic scaling was shown for these s
tems to be at the origin of the equivalence of two freez
criteria for the onset of two-dimensional freezing. Furth
extensions of this work will address possible consequen
of dynamic scaling on higher order static and dynamic c
relation functions with more than two particle coordinat
involved, and possible connections with a correspond
states relationship for transport coefficients introduced
Rosenfeld@20#.
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