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Dynamic scaling and freezing criteria in quasi-two-dimensional dispersions
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We report on a Brownian dynamics simulation study of quasi-two-dimensional dispersions of colloidal
spheres interacting by long-range electrostatic and dipolar magnetic forces. The calculated dynamic correlation
functions are shown to obey dynamic scaling in terms of a characteristic relaxation time related to the mean
particle distance and, due to hydrodynamic interactions, to the particle size. The dynamical freezing criterion
of Lowen [Phys. Rev. E53, R29 (1996)] is shown to be equivalent to a two-dimensional static freezing
criterion.
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There has been strong interest in recent years in the statie1/kgT, andLg is the so-called Bjerrum length of the sol-
and dynamic properties of quasi-two-dimensiof@2D) dis-  vent. Equation1) has been used in various simulation stud-
persions of spherical colloidal particles. Well-studied ex-ies as a model potential for the lateral interaction of charged
amples of such dispersions are charged particles confinesblloidal spheres between two close planar glass plates, with
between two narrow glass platgs,2], and superparamag- the screening lengtk ! determined by the counterions dis-

netic particles close to a water-air interface and interactingocijated from the plategs,7]. The second potential is of
via repulsive dipolar magnetic forc¢8]. Part of the interest  ginojar form

in these systems arises from the fact that, contrary to low-

molecular liquids, the range and strength of the particle in-

teractions can be experimentally controlled. Moreover, the o
particle trajectories can be directly tracked using video mi- pu(r)= AmkgT 13 (3]
croscopy imaging1]. One area of intensive research is con-

cerned with the nature of two-dimensional freezing and melt-

ing that, contrary to three-dimensional systems, can be a . . .
two-stage process of continuous phase transitions with afi"d describes to very good accuracy the magnetic repulsion
intermediate hexatic pha$8]. of superparamagnetic colloidal spheres of induced magnetic

This report is concerned with the general dynamic behavomentM = xB located at a liquid-air interface, with a
ior of Q2D dispersions of spherical particles with strong andmagnetic field of strengtB applied perpendicular to the in-
long-range repulsive interactions. The dynamics of colloidakerface. Herex. is the effective magnetic particle suscepti-
dispersions is controlled not only by direct interparticle bility. Such well-defined Q2D systems have been studied in
forces, but also by solvent-mediated hydrodynamic interack8,9].
tions (HI), which can lead to remarkable dynamical effects The BD finite difference equation employed here for the
[4,5]. We employ a Brownian dynamic®8D) simulation trajectories ofN Brownian spheres in a fluid of viscosity
method to analyze the static and dynamic scaling behavior akads[5,9]
these Q2D systems, and to study its implication on related
static and dynamic freezing criteria. For the first time, par- N
ticular focus is given to reveal the influence of HI on dy- _ Ny P N
namic scaling and on a related dynamic freezing criterion. ARi_gl [AD;(RY)-F+ V- Dy (RTIALHAX;

Two types of effective pair potentials are considered: first
a two-dimensional Yukawa potentigs] +0(At?), ©)

2

—KI

Bu(r)=LgZ? r>o (1)

r’ where AR; is a two-dimensional vector describing the in-
plane displacement of particleduring timet to t + At, FJ-P is
with a hard core part for <o, wherer is the distance be- the direct force on particlpatt derived from the pair poten-
tween two charged spheres of diameter2a, Z is an ef- tials of Egs.(1) and (2), respectively, andDij(RN) is the
fective particle charge in units of the elementary chage, hydrodynamic diffusivity tensor. The latter depends in prin-
ciple on the configurationRN={R,, ... ,Ry} of all N
spheres at timeé and accounts for the solvent-mediated Hl
*Corresponding author. Electronic address: g.naegele@fzbetween particlesandj. The two-dimensional vectaxX; is
juelich.de a Gaussian-distributed random displacement with zero mean
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TABLE |. Parameters of the Q2D superparamagnetic aqueous 25 P
system | and charged systems Il and IIl without HI, and with pair
potentials in Eqs(1) and (2), respectively. The Bjerrum length,
Lg=7.2 A, corresponds to water as solvent at room temperature. 2r
The coupling parameters arg,=puM?n*%(47) and 'y,
=LgZ%n'2
15
A
System | System |l System Il =
=
C=mna? 0.02 0.01 0.003 oty
rola 125 17.7 324
r 3.9 47.8 91.4 05 |
k=krg 25 3.9
rmlro 0.98 0.98 0.97
—Brodu/dr|,— -1 112 420 o°
rla
and covariance matriMXiAXj)= 2D”-At, where the brack- FIG. 1. BD results without HI for the distinct van Hove function

ga(r.t) of systems I-lll(cf. Table ) att=0 (thin lines, where
dq(r,0)=g(r), and att/ 7y=0.032 (thick lines. The characteristic
times 7y of I-lll are different from each other. Insetfy(Xx,7) vs
dimensionless distance=r/r, and reduced time=t/r,, with rq
=n"*2and ry=(nDy) .

ets indicate an equilibrium ensemble average. We employ

time stepAt within the range of 10°-10 4 7,, where 7,

=1/(nDy) is the time needed for a particle to diffuse the

geometrical interparticle distanag=n""2. Here,n is the

two-dimensional number density, aBqg is the free diffusion

coefficient of a particle. For the strongly repelling and rather

dilute systems under consideration, HI are dominated by+R;(0)))/N and the lateral mean-squared displacement

their pairwise additive long-range part. We therefore tigat ~ W(t) =([Ri(t)—R;(0)]%)/4 depend om andt only through

to good accuracy within the Rotne-Prager level, which prex and the reduced time=t/7,. The functiongy(r,t) is pro-

serves the positive definiteness of the exact diffusivity tensoportional to the conditional probability density of finding, at

matrix. The long-range nature of HI is accounted for by em-time t, a particle a distance apart from the location of an-

ploying an Ewald-like summation technique. The influenceother one at=0. Sincegq(r,0)=g(r), gq(r,t) is the time-

of HI on dynamic properties is analyzed by comparison withdependent generalization gfr). Quantities likegy(r,t) and

BD calculations with HI disregarded. W(t) can be measured using colloidal video imaging. BD
Three systems I-Ill are analyzed, with parameters listedesults without HI for thegqy(r,t)’'s of I-1ll at time t

in Table I. System | is an agueous magnetic system described 0.032r, are shown in Fig. 1. Corresponding results for the

by the pair potential2), whereas systems Il and Il are aque-

ous charge-stabilized dispersions characterized by the pair 1

potential(1). These systems are examples of strongly repul-

sive particle dispersions with pronounced next neighbor

shells and masked excluded volume interactions, character-

08 | ——— LI (without HI) ]

ized in their static behavior by a single length scale given by ) ——— LI (with HI: r Ja=12.5, C=0.02)

ro. The radial distribution functiog(r) of these systems | ... 1, 111 (with HI "Z/a=6-25: C=0.08)

reveals a pronounced principal peak located at a radial dis- ~

tancer ,, (cf. BD results in Fig. 1 and Tablg,Inearly equal to % 06 .

ro. The system parameters are such that the thfegs have

the same principal peak heigb{r ). When plotted vs re-
duced distanc&=r/r, theg(r)’s are seen from the inset of
Fig. 1 to superimpose nearly perfectly within tlerange
depicted. This static scaling behavior implies that the corre-
sponding two-dimensional static structure fact®(g])=1
+2anfgdrrg(r)—1]J,(qgr) of systems I-Ill, wherej is 02 1 >
the scattering wave number adg the zeroth-order Bessel T

function of the first kind, nearly coincide when plotted vs the

reduced wave number=a/do. Here,qo=2m/ro~ gy with of systems | and IIl with/without HI vs reduced timeWith HI, the

the peak ofS(q) located agy. system parameters are as in Table |, aside frgifa and surface

PrOVidEd, that =~ rO,iS the only relevan'g length scale al$o fractionC that are given in the figure. For fixed potential parameters
for the particle dynamics, as expected without HI, there is g4 fixedro, we considerr,/a=12.5 and 6.25, witf5(q,)=2.3.

single characteristic time scatg=rg/D, associated withg.  without HI, the long-time asymptotic value is given ()
Dynamic properties like the dimensionless distinct van Hove<0.26. with HI, D(»)~0.31 forr,/a=12.5, andD (%) ~0.34 for

correlation  function  gq(r,t)= n*(EiNq&j _10(r—R;(1) ro/a=6.25.

FIG. 2. Normalized self-diffusion functio® (t)=W(t)/(tD)
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normalized reduced self-diffusion  function D(t) 1 ' '
=W(t)/(Dgt), with D(0)=1, vs reduced time are shown
with/without HI in Fig. 2. The inset in Fig. 1 clearly demon- 08 | o magnetic (HI) |
strates dynamic scaling, according to which colloidal sys- o Yukawa (HT)
tems with long-range repulsion and identical peak heights
g(rm) [likewise, identicalS(q,,)] have nearly identical dy- 06
namic properties, e.g., identicaly(r,t) and W(t)/r,zn, as
functions of reduced distance and time. The correlation time
t/ 7=0.032 corresponds to~=57, for I, t~10r, for I, and o 5.5
t~34r, for Ill, where 7,=a?/D,. As seen from Fig. 2, this &
time lies in the intermediate time regime where the reduced 02t
mean-squared displacemerid(t) has approached the
asymptotic long-time valu®(«) (cf. caption of Fig. 2.
Although the dynamic scaling appears reasonable for sys- 1 3
tems characterized by a single relevant static length scale, it 5(q,,)
is by no means a trivial result. Dynamic scaling of the dy-
namic structure factoB(q,t) related tog4(r,t) by Fourier
transformation, as function of reduced wave numpend

g.me ™ ha}sd peen dpr(;dlcted tvt?Ir'y (;ecently fpr thr?e'froml“ andk, which are variedthroughx, Z, n, andB). Solid line:
Imensional deionized charge-stabiiized SUSpensIons uSIngp%rametrization of the relationg(,:f(S(qm)), using the form

mode coupling approximatioiMCA) with HI neglected ;)¢ 42/~ 0.58) with f(1)=1 and f(5.5)=0.085 that holds
[10]. While the dynamic scaling predictions of the MCA ap- approximately forz=1.5.

ply also tog-space dynamic properties in two dimensions,

the present Q2D simulation study provides an unambiguougom larget BD calculations ofW(t) as described in Ref.
validation of dynamic scaling, particularly regarding the in-[12] without HI, our long-time results foD5/Dg VS S(qpm)
volved approximations made in the MCA. Note that the di-uf the magnetic and Yukawa systems are located on a single
polar potential provides no characteristic length whereas thg,aster curve(cf. Fig. 3, in particular with a value of
Yukawa potential includes ! as an intrinsic length. The DE/D0*0-085 for S(q,,) ~5.5. According to an empirical

screening lengths ~* of the charged systems Il and Il are dynamical criterion for two-dimensional freezing found by
significantly smaller thanry, (cf. Table ) and, since | &yen12] from BD simulations without HI for various
rO,iju/dr|r:K71>1 with pronounced next nelghbo_r shells inverse-power pair potentialﬁlé/Do~0.085 at the freezing
at distance , are therefore of no relevance regarding scal-Iine independent ofi(r) and the nature of the freezing pro-
Ing. : . cess. Moreover, the peak heigBfq,,) of the liquid static
The potgnnals(l) .and (2) are spe.mal cases of the form structure factor at two-dimensional freezing was found to be
Bu(r) =Ar—f(xr) with regular functiorf, amplitudeA, and =, 4 5.5[13] at the freezing line, in good accord with the
expone_:ntl. BY expressing Ea(3) _W'thom_ HI, and t_he BD results of Fig. 3. For comparison, the three-dimensional
Ornstein-Zernicke eq.u.anon associated wglr) [111’ n Hansen-Verlet rulg¢14] of freezing gives a smaller value for
terms of reduced position vectoRs/ry and reduced time, S(q,,) of about 2.85. This indicates the more strongly pro-

one can see thaltlzsystems of equal dimensionless coupling,nceq static correlations in two-dimensional fluids close to
parameterl'=An" and reduced screening parameter freezing. In contrast, the value &f5/Dy~0.098 for three-

— .12 ; : : }
in Krt]o TaZIr: ls t?:]'gaélr)rl] algde%yczmgsalfléeﬁnuévg ?Etéécgﬁrd dimensional freezin§l10,17 is rather close to the one in two
g ’ ploy dimensions. A freezing value dbg/D,~0.1 was obtained

different from each other. This shows that the dynamic scal or three-dimensional hard-sohere dispersions also by Fuchs
ing is not just a straightforward consequence of the forms OElS] usin Imodel—cou lin thpeor asl Fr)n tcl>tic laws W>ilth(;jut
potentials(1) and (2). Sincec(x)~ — Bu(x) = —T f(kx)/x' 9 piing y asymp .

; . . . HI. The work of Fuchs corrects earlier work of Indrani and
for very large separations>ro, with ¢(x) denoting the di- Ramaswamy16] who attempted to relate the Hansen-Verlet
rect static correlation functiofill], there are differences in : Pt . Lo

freezing rule to the one of lween et al. using simplified

the small.wave'number behavpr 8(y) fqr systems I-]ll, mode-coupling ideas. With the scheme of Indrani and Ra-
and thus in their thermodynamic properties. However, these

. - ~ ) maswamy, the observed freezing vaﬁ]g’D0~O.1 has been
differences are visible only whemc(y) =1~ 1/S(y) is plot- nqerestimated by a factor of 2. Summarizing, we have

ted instead of5(y), wherec(y) is the Fourier transform of = shown that the equivalence of two seemingly unrelated static
c(y) [10,11. [13] and dynamid12] criteria for two-dimensional freezing
The dynamic scaling for Q2D dispersions with strong andis a consequence of dynamic scaling.

long-range particle repulsions implies that systems with So far we have disregarded the dynamical influence of Hl,
equalg(ry) [and S(gy)] also have the same value of the which introduces the particle radius as another relevant
normalized long-time  self-diffusion  coefficientDg  length scale. For the pairwise-additive far-field part of the
=lim,_.W(t)/t. The one-to-one correspondence betweerhydrodynamic diffusivity tensor prevailing for the systems
S(g,,) and Dngo is shown in Fig. 3, Witng extrapolated under consideration, this fact becomes apparent from

» magnetic (without HI)
® Yukawa (without HI) -

=)

DD,

e e e —

FIG. 3. Reduced long-time self-diffusion coefficieBt5/D,
without HI and with HI (for fixed ratior,/a=6.25) vs structure
factor peak heigh$§(q,,). System parameters as for | and Ill, aside
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D;;(RN)/Dg~ Di('z)([Ri_Rj]/a)/DOa whereD? is the pair- for systems with prevailing far-field HI. For systems with
wise additive tvx;o-body part d;; [17]. With |_'||' there exists dominating near-field HI and strong lubrication forces, like
thus a more restricted form of dynamic scaling where thedispersions of colloidal hard sphereBg<D, and the dy-
master curves fogy(x,7) and D(7) depend ora/r,. This  nhamic freezing criterion must then be stated in terms of
restricted scaling can be deduced also from MCA results foP§/D3 instead OfDE/D_o, as shown for three-dimensional
Brownian systems with far-field HI includ€gd 8]. bulk _systems by experimeni9] and by rescaled MCA cal-
BD results forD(7) and DY/Dg vs. S(q,,) with Hl are  culations[10]. _ _
depicted in Figs. 2 and 3 for magnetic and Yukawa systems. TO conclude, we have analyzed the static and dynamic
In Fig. 2, two size ratiog,/a=6.25 and 12.5 are used to Scaling behavior of strongly repulsive Q2D dispersions with
show the dependence Bf( ) onr,/a. The observed modest and without HI. Dynamic scaling was shown for these sys-
enhancement of self-diffusion is indicative of prevailing far- tems to be at the origin of the equivalence of two freezing
field HI [5,8,9,18. The BD results oD () for | and 11l with criteria for the onset of two-dimensional freezing. Further
HI and givena/r, are seen, aside from statistical uncertain-€xténsions of this work will address possible consequences
ties, to be nearly identical with each other. According to Fig.0f dynamic scaling on higher order static and dynamic cor-
2, the enhancement @f(7) is smaller for smallea/r,. The relation functions with more than two particle coordinates
value of DY/D,, close to freezing is thus only modestly en- iNvolved, and possible connections with a corresponding
larged by HI as anticipated from Fig. 3 for the cagga states relationship for transport coefficients introduced by

=6.25. BD simulations with HI become exceedingly time Rosenfeld 20].

consuming when the freezing point is approached, since a We acknowledge very helpful support in part of the BD
large number of particles is needed to account for strong angimulation coding by B. Rinn and P. Maass, and we thank R.
long-range particle correlations. Note that the short-timeKlein and J. K. G. Dhont for their interest and the Deutsche
self-diffusion coefficienngzIimHOW(t)/t is equal toDg Forschungsgemeinschd®FB 513 for funding.
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